

 Navigation

 	
 index

 	
 next |

 	confy 0.3.7 documentation

confy

[image: https://badge.fury.io/py/confy.png]
 [https://badge.fury.io/py/confy][image: https://api.travis-ci.org/jqb/confy.png?branch=master]
 [https://travis-ci.org/jqb/confy][image: https://coveralls.io/repos/jqb/confy/badge.png?branch=master]
 [https://coveralls.io/r/jqb/confy?branch=master][image: https://pypip.in/d/confy/badge.png]
 [https://crate.io/packages/confy/]Pragmatic & flexible configuration loader that makes your app
settings clean and sexy. It reads configuration from many differnt
sources including: python modules, environment variables and *.ini
files.

The project aims to provide not only simple and easy solution to read
settings in various formats, but also to give strong convention on how
to keep code responsible for loading configuration.

Installation

Simple and straight forward:

pip install confy

Source

All the code is hosted on github https://github.com/jqb/confy

	Quick start
	Paths to resources

	Variables interpolation

	Neasted structures - collections

	Lazy property

	Lazy import property

	Raw propery

	Source
	INI files

	Envdir source

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013, Kuba Janoszek (kuba.janoszek@gmail.com).
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	ver-0.3.5

 	ver-0.3.4

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	confy 0.3.7 documentation

Quick start

All the examples here assumes that settings directory looks exactly
the same:

settings/
 |-- __init__.py
 |-- base.py
 |-- development.py
 |-- production.py
 `-- local.py

Content of settings/__init__.py is also the same:

	1
2
3
4
5
6
7

	 import confy

 confy = confy.loader(__file__)
 config = confy.merge(
 confy.from_modules('base', 'development'),
 confy.from_modules('local', silent=True),
)

Let’s just explain what short snippet in settings/__init__.py means.

In line no 3 we’re defining a loader. The important thing here is that
we are passing __file__ variable into loader constructor. This makes
our loader aware of possition in the file system where are settings
are and moreover gives usefull “confy.rootpath” method (we’ll explain
it later).

Lines 4-7 loades and merges settings from the sources. For sake of
simplicity here we’re loading settings only from python modules, but
later we gonna explain other possible configuration sources, too.

Line no 5 loads two modules (‘base’ and ‘development’) one after
another.

Line no 6 loads module ‘local’. ‘silent’ param set to True means that
confy won’t complain if there’s no such module like ‘local’. In other
words you can use it to conditionaly load modules (and other settings
sources). This is convinent to configure environment specific
settings.

Paths to resources

This is a common problem for web aplications, that you need to
configure absolute path to the folder with your static files or other
resources.

With “confy” you can simply define the paths relatively to your
settings folder. Here’s how to do that.

Inside “settings/base.py” you can put the following snippet:

SETTINGS_ROOT = confy.rootpath() # /path/to/project/settings
PROJECT_ROOT = confy.rootpath('..') # /path/to/project
STATIC_FILES = confy.rootpath('..', 'static') # /path/to/project/static

As you can see the path inside “confy.rootpath” is always calculated
relatively to “settings” folder.

Variables interpolation

Interpolation is an nice feature in order to make your configuration
clean and as simple as possible. Confy uses standard python
“{variable_name}” interpolation, so you don’t need to learn anything
new. Let’s see simple example.

So if you are using some kind of service inside your application you
might want to easily manage url’s you need to work with to avoid
simple and annoying problems with misstyped protocol (http vs https)
and super-annoing duplication of copy-and-pasting the same root of
url.

Assuming this is content of your “settings/base.py” file:

-*- coding: utf-8 -*-

Some immaginary API settings
api_domain = "http://api.com"
API_ADD = '{api_domain}/add/'
API_DELETE = '{api_domain}/delete/'

you can easily change values of “api_domain” in development.py /
production.py and you don’t need to rewrite all the urls once again.

Contents of “settings/development.py”:

Let's just change interesting parts
api_domain = "http://development.api.com"

>>> import os; os.environ['CONFIGURATION_MODE'] == 'development'
>>>
>>> from settings import config
>>> assert config.API_ADD == 'http://api-development.com/add/'
>>> assert config.API_DELETE == 'http://api-development.com/delete/'

Contents of “settings/production.py”:

Let's just change interesting parts
api_domain = "http://production.api.com"

>>> import os; os.environ['CONFIGURATION_MODE'] == 'production'
>>>
>>> from settings import config
>>> assert config.API_ADD == 'http://production.api.com/add/'
>>> assert config.API_DELETE == 'http://production.api.com/delete/'

Neasted structures - collections

In general keeping settings as flat’n’simple variables is the best
idea, however it makes sense sometimes to avoid typing the same prefix
again and again.

Contents of your “base.py” might look like this

settings/base.py
API = confy.collection(
 domain = "http://api.com",
 ADD = '{domain}/add/',
 DELETE = '{domain}/delete/',
)

Then again, changing domain url is very simple, inside your
“development.py”

settings/development.py
API.update(
 domain = "http://api-development.com",
)

>>> import os; os.environ['CONFIGURATION_MODE'] == 'development'
>>>
>>> from settings import config
>>> assert config.API.ADD == 'http://api-development.com/add/'
>>> assert config.API.DELETE == 'http://api-development.com/delete/'

As you can see it’s preatty simple, but two things might be
interesting to you.

	global “confy” object?

yes - it is global helper buy ONLY inside your settings folder
and it is global only for the time when module is beeing
loaded. Thats why It’s been decided to use “with confy.loader”
statement instead of simple assigment.

	“confy.collection”

creates confy collection object. Basicaly all you need to know is
that it behaves exactly as a dictionary, and has additional
features like to recognize “{interpolation_variables}” and ability
to use __getitem__ notation for keys if you want to (keys might be
non-identifiers as well - but ofcourse you won’t be able to get
them with ”.” notation).

>>> from settings import config
>>> config.API.ADD == config.API['ADD'] # => True

Lazy property

Having interpolation property is nice feature but it very rarely
happens that you need more flexibility. “lazy” property is allowing
you to create property-like function that’ll be invoked to calculate
value.

API = confy.collection(
 domain = "http://api.com",
 ADD = '{domain}/add/',
 DELETE = '{domain}/delete/',
 ALL = confy.lazy(lambda self: "%s, %s" % (self.ADD, self.DELETE)),
)

all_urls = API.ALL # the function that was passed to "confy.lazy" is invoked here
assert all_urls == "http://api.com/add/, http://api.com/delete/"

Lazy import property

It’s often practice to store complete path to
“somekind.of.BackendClass” in settings file. Hovever you always need
to write code that will later use it to acctualy import the think.
You can stop thinking about it:

settings/base.py
SUPER_DUPER_BACKEND = confy.lazyimport('somekind.of.BackendClass')

>>> from settings import config # no import here...
>>> config.SUPER_DUPER_BACKEND # ...but here the import is done and BackendClass is ready for you

Raw propery

Ok - but you really want to use “{}” chars inside your setting
string - exactly as they are. - No problem:

settings/base.py
RAW_STRING = confy.raw('use as many {} specia; {{{ }}}}} () characters as you want')

 Copyright 2013, Kuba Janoszek (kuba.janoszek@gmail.com).
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	ver-0.3.5

 	ver-0.3.4

 	latest

 Navigation

 	
 index

 	
 previous |

 	confy 0.3.7 documentation

Source

confy supports number of formats from which you can read configuration.
You can see how it works with with modules in quick start tutorial. Here
I’m gonna explain other features.

	Let’s extend our example from quick start tutorial.
Settings directory now looks like this:

settings/
 |-- __init__.py
 |-- base.py
 |-- development.py
 |-- production.py
 |-- local.py
 |-- sample.ini # <= ini file
 `-- envvars/ # <= directory with variables like for "envdir"
 |-- DATABASE/ # http://cr.yp.to/daemontools/envdir.html
 | |-- USER
 | |-- PASSWORD
 | |-- PORT
 | |-- NAME
 | `-- HOST
 `-- HELLO

If you don’t have idea how example envvars could look like,
please visit
https://github.com/jqb/confy/tree/master/tests/tconf/envvars inside
confy tests directory.

	Content for settings/__init__.py for all examples below goes as
follows:

	1
2
3
4
5
6
7
8
9

	 import confy

 confy = confy.loader(__file__)
 config = confy.merge(
 confy.from_modules('base', 'development'),
 confy.from_modules('local', silent=True),
 confy.from_ini('sample.ini'),
 confy.from_dirs('envvars'),
)

INI files

confy can easily read standard “ini” files. If - let’s say -
content of sample.ini is

[DEFAULT]
root = /home/user

[static]
project_dir = %{root}/static

[media]
project.dir = %{root}/media # note there's "." not "_" in variable name

when this is what you gonna get when you import config from
settings/__init__.py

from settings import config

assert config.static.project_dir == "/home/user/static" # OK
assert config.media['project.dir'] == "/home/user/media" # OK

As you can see confy supports ”.” notation as far as variable
names allows it to do so.

Envdir source

If you know deamontools' envdir that will be easy
(http://cr.yp.to/daemontools/envdir.html). confy reads data inside
env directory easily. It’s a little bit more powerfull since you’re
not restricted to flat names only. Every directory inside pointed
directory is treaded as key in dictionary, so you can have neasted
structures as well.

In my extended example you can see envvars directory which is read
by confy. This is what you gonna get (all the values are from
confy tests folder: https://github.com/jqb/confy/tree/master/tests/tconf/envvars)

from settings import config

assert config.DATABASE.USER == "testdb" # OK
assert config.DATABASE.PASSWORD == "testdb" # OK
assert config.DATABASE.POST == "9000" # OK
etc...

assert config.HELLO == "world!" # OK

 Copyright 2013, Kuba Janoszek (kuba.janoszek@gmail.com).
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	ver-0.3.5

 	ver-0.3.4

 	latest

 Navigation

 	
 index

 	confy 0.3.7 documentation

Index

 Copyright 2013, Kuba Janoszek (kuba.janoszek@gmail.com).
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	ver-0.3.5

 	ver-0.3.4

 	latest

 _static/down.png

_static/plus.png

_static/comment.png

_static/minus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

search.html

 Navigation

 		
 index

 		confy 0.3.7 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Kuba Janoszek (kuba.janoszek@gmail.com).
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		ver-0.3.5

 		ver-0.3.4

 		latest

_static/comment-close.png

_static/up-pressed.png

_static/down-pressed.png

_static/up.png

